Shock response of single crystal and nanocrystalline pentaerythritol tetranitrate: Implications to hotspot formation in energetic materials.
نویسندگان
چکیده
We investigate shock response of single crystal and nanocrystalline pentaerythritol tetranitrate (PETN) with a coarse-grained model and molecular dynamics simulations, as regards mechanical hotspot formation in the absence or presence of grain boundaries (GBs). Single crystals with different orientations, and columnar nanocrystalline PETN with regular hexagonal, irregular hexagonal, and random GB patterns, are subjected to shock loading at different shock strengths. In single crystals, shock-induced plasticity is consistent with resolved shear stress calculations and the steric hindrance model, and this deformation leads to local heating. For regular-shaped hexagonal columnar nanocrystalline PETN, different misorientation angles lead to activation of different/same slip systems, different deformation in individual grains and as a whole, different GB friction, different temperature distributions, and then, different hotspot characteristics. Compared to their regular-shaped hexagonal counterpart, nanocrystalline PETN with irregular hexagonal GB pattern and that with random GBs, show deformation and hotspot features specific to their GBs. Driven by stress concentration, hotspot formation is directly related to GB friction and GB-initiated crystal plasticity, and the exact deformation is dictated by grain orientations and resolved shear stresses. GB friction alone can induce hotspots, but the hotspot temperature can be enhanced if it is coupled with GB-initiated crystal plasticity, and the slip of GB atoms has components out of the GB plane. The magnitude of shearing can correlate well with temperature, but the slip direction of GB atoms relative to GBs may play a critical role. Wave propagation through varying microstructure may also induce differences in stress states (e.g., stress concentrations) and loading rates, and thus, local temperature rise. GB-related friction and plasticity induce local heating or mechanical hotspots, which could be precursors to chemical hotspot formation related to initiation in energetic materials, in the absence of other, likely more effective, means for hotspot formation such as void collapse.
منابع مشابه
Reactive molecular dynamics simulations of shock through a single crystal of pentaerythritol tetranitrate.
Large-scale molecular dynamics simulations and the reactive force field ReaxFF were used to study shock-induced initiation in crystalline pentaerythritol tetranitrate (PETN). In the calculations, a PETN single crystal was impacted against a wall, driving a shockwave back through the crystal in the [100] direction. Two impact speeds (4 and 3 km/s) were used to compare strong and moderate shock b...
متن کاملEnergy Transfer Between Coherently Delocalized States in Thin Films of the Explosive Pentaerythritol Tetranitrate (PETN) Revealed by Two-Dimensional Infrared Spectroscopy.
Pentaerythritol tetranitrate (PETN) is a common secondary explosive and has been used extensively to study shock initiation and energy propagation in energetic materials. We report 2D IR measurements of PETN thin films that resolve vibrational energy transfer and relaxation mechanisms. Ultrafast anisotropy measurements reveal a sub-500 fs reorientation of transition dipoles in thin films of vap...
متن کاملFirst-principles investigation of anisotropic constitutive relationships in pentaerythritol tetranitrate
First-principles density functional theory DFT calculations have been used to obtain the constitutive relationships of pentaerythritol tetranitrate PETN-I , a crystalline energetic material. The isotropic equation of state EOS for hydrostatic compression has been extended to include uniaxial compressions in the 100 , 010 , 001 , 110 , 101 , 011 , and 111 crystallographic directions up to a comp...
متن کاملAtomistic simulation of orientation dependence in shock-induced initiation of pentaerythritol tetranitrate.
The dependence of the reaction initiation mechanism of pentaerythritol tetranitrate (PETN) on shock orientation and shock strength is investigated with molecular dynamics simulations using a reactive force field and the multiscale shock technique. In the simulations, a single crystal of PETN is shocked along the [110], [001], and [100] orientations with shock velocities in the range 3-10 km/s. ...
متن کاملQuantum Mechanical Predictions of Energetic Materials: When Good Theories Go Bad
The performance of density functional theories (DFT) in predicting structural parameters for six conventional energetic materials (EM) over various degrees of compression was examined for a wide range of pressures. The systems studied were nitromethane, 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), cyclotrimethylenetrinitramine (RDX), 2,4,6,8,10,12hexanitrohexaazaisowurzitane (CL-20), 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 139 16 شماره
صفحات -
تاریخ انتشار 2013